Article ID Journal Published Year Pages File Type
10694452 Advances in Space Research 2011 9 Pages PDF
Abstract
Coronal hole jets are fast ejections of plasma occurring within coronal holes, observed at Extreme-UltraViolet (EUV) and X-ray wavelengths. Recent observations of jets by the STEREO and Hinode missions show that they are transient phenomena which occur at much higher rates than large-scale impulsive phenomena like flares and Coronal Mass Ejections (CMEs). In this paper we describe some typical characteristics of coronal jets observed by the SECCHI instruments of STEREO spacecraft. We show an example of 3D reconstruction of the helical structure for a south pole jet, and present how the angular distribution of the jet position angles changes from the Extreme-UltraViolet-Imager (EUVI) field of view to the CORonagraph1 (COR1) (height ∼2.0 R⊙ heliocentric distance) field of view. Then we discuss a preliminary temperature determination for the jet plasma by using the filter ratio method at 171 and 195 Å and applying a technique for subtracting the EUV background radiation. The results show that jets are characterized by electron temperatures ranging between 0.8 and 1.3 MK. We present the thermal structure of the jet as temperature maps and we describe its thermal evolution.
Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , ,