Article ID Journal Published Year Pages File Type
10694494 Advances in Space Research 2011 15 Pages PDF
Abstract
High precision entry navigation capability is essential for future Mars pinpoint landing missions, together with the entry guidance and aerodynamic lift control. This paper addresses the issue of Mars entry navigation using inertial measurement unit (IMU) and orbiting or surface radiometric beacons. The range and Doppler information sensed from orbiting or surface radio beacons and the entry vehicle state information derived from IMU are integrated in Unscented Kalman filter to correct the inertial constant bias and suppress the navigation measurement noise. Computer simulations show that the integrated navigation algorithm proposed in this paper can achieve 50 m position error and 2 m/s velocity error, which satisfies the need of future pinpoint Mars landing missions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, ,