Article ID Journal Published Year Pages File Type
10700335 Astroparticle Physics 2005 15 Pages PDF
Abstract
We present first significant limits on WIMP dark matter by the phonon-light technique, where combined phonon and light signals from a scintillating cryogenic detector are used. Data from early 2004 with two 300 g CRESST-II prototype detector modules are presented, with a net exposure of 20.5 kg days. The modules consist of a CaWO4 scintillating “target” crystal and a smaller cryogenic light detector. The combination of phonon and light signals leads to a strong suppression of non-nuclear recoil backgrounds. Using this information to define an acceptance region for nuclear recoils we have 16 events from the two modules, corresponding to a rate for nuclear recoils between 12 and 40 keV of (0.87 ± 0.22) events/(kg day). This is compatible with the rate expected from neutron background, and most of these events lie in the region of the phonon-light plane anticipated for neutron-induced recoils. A particularly strong limit for WIMPs with coherent scattering results from selecting a region of the phonon-light plane corresponding to tungsten recoils, where the best module shows zero events.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, , , , , , , , , , , , , , , , , , ,