Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10701359 | Icarus | 2013 | 7 Pages |
Abstract
We present the first high-resolution near-infrared (1.18-2.38 μm) spectrum of the rings of Uranus, as observed with adaptive optics on the W.M. Keck II telescope in August 2010. We derive ring equivalent widths, as well as ring and particle reflectivities for the â ring and ringlet groups based on H- and K-band data. We find the rings to be gray, indicating that they are dominated by large particles rather than dust, and we find no evidence for water ice. We present a reflectivity spectrum for the â ring alone, which we also find to be consistent with a flat spectrum. We derive H-band ring particle reflectivities of 0.022 ± 0.010, 0.051 ± 0.009 0.042 ± 0.012, and 0.043 ± 0.001 and K-band ring particle reflectivities of 0.016 ± 0.010, 0.034 ± 0.012, 0.047 ± 0.008 and 0.041 ± 0.002 for the 456, αβ, ηγδ, and â ring groups. Previous observations have found ring particle reflectivities in the 0.033-0.044 range (de Pater, I., Gibbard, S., Macintosh, B.A., Roe, H.G. [2002]. Icarus 160, 359-374; Gibbard, S.G., de Pater, I., Hammel, H.B. [2005]. Icarus 174, 253-262), and are generally consistent with our results.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
Katherine de Kleer, Imke de Pater, Máté Ádámkovics, Heidi Hammel,