Article ID Journal Published Year Pages File Type
10710308 Journal of Magnetism and Magnetic Materials 2005 8 Pages PDF
Abstract
Novel core-shell poly(acrylamide) magnetic nanogels with controllable particle size produced via a photochemical method in an emulsion-free aqueous system at room temperature have been developed for the first time. After Hoffmann elimination of carbonyl, nanogels with amino groups, or poly(acrylamide-vinyl amine) magnetic nanogels, were also obtained. Particle size, size distributions and zeta potential of the magnetic nanogels before and after Hoffmann elimination were measured by photo-correlation spectroscopy (PCS). The structure and morphology of the magnetic nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The higher dispersibility and stability of the magnetic nanogels suggest promising potential applications in targeted radiopharmaceuticals carriers for cancer therapy, and in biological and medical studies as well.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,