Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10713926 | Physica B: Condensed Matter | 2012 | 4 Pages |
Abstract
Magneto-optic (MO) imaging is based on Faraday rotation of a linearly polarized incident light beam illuminating a sensitive MO layer placed in close contact to the sample. For in-plane magnetized layers of Lu3âxBix Fe5âyGayO12 ferrimagnetic garnet films, zig-zag domain formation occurs whenever the sample stray parallel field component changes sign. In this work we study the behavior of zig-zag domain walls that appear when the garnet is placed over samples with in-plane magnetization like audio tapes recorded with different signals. We describe the zig-zag walls considering the anisotropy, exchange and magnetostatic energies in the Neel tails and the contribution of an applied magnetic field. Using different recorded signals we have been able to control the gradient of stray parallel field component on the garnet, changing the distance between domains and the size of zig-zag walls. We could even avoid the appearance of these zig-zag domain walls and obtain closed domains structures. We also study the behavior of the domain walls when an external magnetic field is applied parallel to the sample.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
A.J. Moreno, H. Ferrari,