Article ID Journal Published Year Pages File Type
10714112 Physica B: Condensed Matter 2012 7 Pages PDF
Abstract
We report a systematic study of the influence of Nb substitution for Fe on the magnetic properties and magneto-impedance (MI) effect in amorphous and annealed Fe76.5−xSi13.5B9Cu1Nbx (x=0, 1, 2, 3, 4, 5, 6, and 7) ribbons. The amorphous ribbons were annealed at different temperatures ranging from 530 to 560 °C in vacuum for different annealing times between 5 and 20 min. We have found that for the as-quenched amorphous ribbons, the substitution of Nb for Fe first increases the saturation magnetization (Ms) and decreases the coercivity (Hc) until x=3, for which the largest Ms∼152 emu/g and the smallest Hc∼1.3 Oe are obtained, then an opposite trend is found for x>3. The largest MI ratio (ΔZ/Z∼38% at f=6 MHz) is achieved in the amorphous ribbon with x=3. A similar trend has been observed for the annealed ribbons. The most desirable magnetic properties (Ms∼156 emu/g and Hc∼1.8 Oe) and the largest MI ratio (ΔZ/Z∼221% at f=6 MHz) are achieved for the x=3 sample annealed at 540 °C for 15 min. A correlation between the microstructure, magnetic properties, and MI effect in the annealed ribbons has been established.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,