Article ID Journal Published Year Pages File Type
10714114 Physica B: Condensed Matter 2012 6 Pages PDF
Abstract
Magnetic and photoluminescent properties of manganese-doped ZnSe crystals with different impurity concentrations were investigated. The concentration of Mn2+ ions in ZnSe crystals has been varied from 0.01 to 0.3 at%. Magnetic and photoluminescent studies have confirmed the introduction of Mn in ZnSe crystals. It was established that Mn2+ ions are responsible for the emission bands with maximum at 616 nm and 633 nm, which correspond to 4T2→6A1 and 4T1→6A1 intracentre transitions of Mn2+ ions respectively. It was found that the concentration quenching of the photoluminescent bands is associated with Mn2+ ions, which are due to the formation of Mn-Mn clusters. Magnetic properties studies have shown that at high doping levels the manganese atoms form Mn-Mn clusters in ZnSe. From the temperature dependence of magnetic susceptibility of ZnSe:Mn crystals that follows the Curie-Weiss law, it was possible to estimate the Curie-Weiss temperature Θ(x) and the effective Mn-Mn antiferromagnetic exchange constant (J1).
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , , , , , ,