Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10720696 | Nuclear Physics B | 2012 | 15 Pages |
Abstract
Topological invariants for the 4D gapped system are discussed with application to the quantum vacua of relativistic quantum fields. Expression NË3 for the 4D systems with mass gap defined in Volovik (2010) [13] is considered. It is demonstrated that NË3 remains the topological invariant when the interacting theory in deep ultraviolet is effectively massless. We also consider the 5D systems and demonstrate how 4D invariants emerge as a result of the dimensional reduction. In particular, the new 4D invariant NË5 is suggested. The index theorem is proved that defines the number of massless fermions nF in the intermediate vacuum, which exists at the transition line between the massive vacua with different values of NË5. Namely, 2nF is equal to the jump ÎNË5 across the transition. The jump ÎNË3 at the transition determines the number of only those massless fermions, which live near the hypersurface Ï=0. The considered invariants are calculated for the lattice model with Wilson fermions.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
M.A. Zubkov, G.E. Volovik,