Article ID Journal Published Year Pages File Type
10720845 Nuclear Physics B 2005 34 Pages PDF
Abstract
We propose a general and compact scheme for the computation of the periods and amplitudes of the chiral persistent currents, magnetizations and magnetic susceptibilities in mesoscopic fractional quantum Hall disk samples threaded by Aharonov-Bohm magnetic field. This universal approach uses the effective conformal field theory for the edge states in the quantum Hall effect to derive explicit formulas for the corresponding partition functions in presence of flux. We point out the crucial role of a special invariance condition for the partition function, following from the Bloch-Byers-Yang theorem, which represents the Laughlin spectral flow. As an example we apply this procedure to the Zk parafermion Hall states and show that they have universal non-Fermi liquid behavior without anomalous oscillations. For the analysis of the high-temperature asymptotics of the persistent currents in the parafermion states we derive the modular S-matrices constructed from the S matrices for the u(1) sector and that for the neutral parafermion sector which is realized as a diagonal affine coset.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,