Article ID Journal Published Year Pages File Type
10720857 Nuclear Physics B 2005 29 Pages PDF
Abstract
Conditional and Lie symmetries of semi-linear 1D Schrödinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrödinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf3)C. We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf3)C are classified and the complete list of conditionally invariant semi-linear Schrödinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,