Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10722580 | Physics Letters B | 2011 | 4 Pages |
Abstract
Using D-brane physics, we study fractional quantum Hall solitons (FQHS) in ABJM-like theory in terms of type IIA dual geometries. In particular, we discuss a class of Chern-Simons (CS) quivers describing FQHS systems at low energy. These CS quivers come from R-R gauge fields interacting with D6-branes wrapped on 4-cycles, which reside within a blown up CP3 projective space. Based on the CS quiver method and mimicking the construction of del Pezzo surfaces in terms of CP2, we first give a model which corresponds to a single layer model of FQHS system, then we propose a multi-layer system generalizing the doubled CS field theory, which is used in the study of topological defect in graphene.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Adil Belhaj,