Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10723388 | Physics Letters B | 2007 | 6 Pages |
Abstract
The four-dimensional critical scalar theory at equilibrium with a thermal bath at temperature T is considered. The thermal equilibrium state is labeled by n the winding number of the vacua around the compact imaginary-time direction which compactification radius is 1/T. The effective action for zero modes is a three-dimensional Ï4 scalar theory in which the mass of the scalar field is proportional to n/T resembling the Kaluza-Klein dimensional reduction. Similar results are obtained for the theory at zero temperature but in a one-dimensional potential well. Since parity is violated by the vacua with odd vacuum number n, in such cases there is also a cubic term in the effective potential. The Ï3 term contribution to the vacuum shift at one-loop is of the same order of the contribution from the Ï4 term in terms of the coupling constant of the four-dimensional theory but becomes negligible as n tends to infinity. Finally, the relation between the scalar classical vacua and the corresponding SU(2) instantons on S1ÃR3 in the 't Hooft ansatz is studied.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
F. Loran,