Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10724958 | Physics Letters B | 2006 | 8 Pages |
Abstract
Recent astronomical observations indicate that the Universe is presently almost flat and undergoing a period of accelerated expansion. Basing on Einstein's general relativity all these observations can be explained by the hypothesis of a dark energy component in addition to cold dark matter (CDM). Because the nature of this dark energy is unknown, it was proposed some alternative scenario to explain the current accelerating Universe. The key point of this scenario is to modify the standard FRW equation instead of mysterious dark energy component. The standard approach to constrain model parameters, based on the likelihood method, gives a best-fit model and confidence ranges for those parameters. We always arbitrary choose the set of parameters which define a model which we compare with observational data. Because in the generic case, the introducing of new parameters improves a fit to the data set, there appears the problem of elimination of model parameters which can play an insufficient role. The Bayesian information criteria of model selection (BIC) is dedicated to promotion a set of parameters which should be incorporated to the model. We divide class of all accelerating cosmological models into two groups according to the two types of explanation acceleration of the Universe. Then the Bayesian framework of model selection is used to determine the set of parameters which gives preferred fit to the SNIa data. We find a few of flat cosmological models which can be recommend by the Bayes factor. We show that models with dark energy as a new fluid are favoured over models featuring a modified FRW equation.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Marek SzydÅowski, Aleksandra Kurek, Adam Krawiec,