Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10725651 | Physics Letters B | 2010 | 9 Pages |
Abstract
We investigate the effect of varying boundary conditions on the renormalization group flow in a recently developed noncommutative geometry model of particle physics and cosmology. We first show that there is a sensitive dependence on the initial conditions at unification, so that, varying a parameter even slightly can be shown to have drastic effects on the running of the model parameters. We compare the running in the case of the default and the maximal mixing conditions at unification. We then exhibit explicitly a particular choice of initial conditions at the unification scale, in the form of modified maximal mixing conditions, which have the property that they satisfy all the geometric constraints imposed by the noncommutative geometry of the model at unification, and at the same time, after running them down to lower energies with the renormalization group flow, they still agree in order of magnitude with the predictions at the electroweak scale.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Daniel Kolodrubetz, Matilde Marcolli,