Article ID Journal Published Year Pages File Type
10725930 Physics Letters B 2008 6 Pages PDF
Abstract
We explore the formation of diquark bound states and their Bose-Einstein condensation (BEC) in the phase diagram of three-flavor quark matter at nonzero temperature, T, and quark chemical potential, μ. Using a quark model with a four-fermion interaction, we identify diquark excitations as poles of the microscopically computed diquark propagator. The quark masses are obtained by solving a dynamical equation for the chiral condensate and are found to determine the stability of the diquark excitations. The stability of diquark excitations is investigated in the T-μ plane for different values of the diquark coupling strength. We find that diquark bound states appear at small quark chemical potentials and at intermediate coupling strengths. Bose-Einstein condensation of non-strange diquark states occurs when the attractive interaction between quarks is sufficiently strong.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
, , ,