Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10727766 | Physics Letters A | 2013 | 8 Pages |
Abstract
Periodically wrinkled graphene sheet is of interest as a building block to develop nanoelectronic devices. This work presents that periodically wrinkled graphene sheet can be applied to a pattern, to form one-dimensionally well-ordered C60 molecules, via Monte Carlo simulations using the data obtained from atomistic calculations. Since the valleys of a sinusoidal graphene surface provide energetic ground sites for absorbed C60 molecules, their motions seeking stable positions lead to one-dimensional self-assembly. The size of the wrinkles, the density of adsorbed C60 molecules, and the temperature are very important parameters to obtain a one-dimensional C60 molecules array. We estimate high one-dimensional diffusion coefficients of C60 molecules on the wrinkled graphene surface. Our results can provide a possible approach to make a quantum information array, based on endohedral fullerenes and a graphene quantum dot array, by transforming C60 molecules to graphene nanoflakes.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
Sun-Young Kim, Ho Jung Hwang, Jeong Won Kang,