Article ID Journal Published Year Pages File Type
10728785 Physics Letters A 2013 5 Pages PDF
Abstract
The electronic structures and optical properties of Cu2ZnSnS4 (CZTS) under in-plane biaxial strain were systematically investigated using first-principles calculations based on generalized gradient approximation and hybrid functional method, respectively. It is found that the fundamental bandgap at the Γ point decreases linearly with increasing tensile biaxial strain perpendicular to c-axis. However, a bandgap maximum occurs as the compressive biaxial strain is 1.5%. Further increase of compressive strain decreases the bandgap. In addition, the optical properties of CZTS under biaxial strain are also calculated, and the variation trend of optical bandgap with biaxial strain is consistent with the fundamental bandgap.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , , , , ,