Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10729219 | Physics Letters A | 2011 | 6 Pages |
Abstract
A mesoscale Aharonov-Bohm (AB) ring with a quantum dot (QD) embedded in each arm is computationally modeled for unique transmission properties arising from a combination of AB effects and Zeeman splitting of the QD energy levels. A tight-binding Hamiltonian is solved, providing analytical expressions for the transmission as a function of system parameters. Transmission resonances with spin-polarized output are presented for cases involving either a perpendicular field, or a parallel field, or both. The combination of the AB-effect with Zeeman splitting allows sensitive control of the output resonances of the device, manifesting in spin-polarized states which separate and cross as a function of applied field. In the case with perpendicular flux, the AB-oscillations exhibit atypical non-periodicity, and Fano-type resonances appear as a function of magnetic flux due to the flux-dependent shift in the QD energy levels via the Zeeman effect.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
Eric R. Hedin, Abigail C. Perkins, Yong S. Joe,