Article ID Journal Published Year Pages File Type
10733207 Chaos, Solitons & Fractals 2005 6 Pages PDF
Abstract
To seek for a possible origin of fractal pattern in nature, we perform a molecular dynamics simulation for a fragmentation of an infinite fcc lattice. The fragmentation is induced by the initial condition of the model that the lattice particles have the Hubble-type radial expansion velocities. As time proceeds, the average density decreases and density fluctuation develops. By using the box counting method, it is found that the frequency-size plot of the density follows instantaneously a universal power-law for each Hubble constant up to the size of a cross-over. This cross-over size corresponds to the maximum size of fluctuation and is found to obey a dynamical scaling law as a function of time. This instantaneous generation of a nascent fractal is purely of dynamical origin and it shows us a new formation mechanism of a fractal patterns different from the traditional criticality concept.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, ,