Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10733230 | Chaos, Solitons & Fractals | 2005 | 24 Pages |
Abstract
Using the method of multiple scales, the nonlinear instability problem of two superposed dielectric fluids is studied. The applied electric filed is taken into account under the influence of external modulations near a point of bifurcation. A time varying electric field is superimposed on the system. In addition, the viscosity and variable gravity force are considered. A generalized equation governing the evolution of the amplitude is derived in marginally unstable regions of parameter space. A bifurcation analysis of the amplitude equation is carried out when the dissipation due to viscosity and the control parameter are both assumed to be small. The solution of a nonlinear equation in which parametric and external excitations are obtained analytically and numerically. The method of generalized synchronization is applied to determine the equations that describe the modulation of the amplitude and phase. These equations are used to determine the steady state equations. Frequency response curves are presented graphically. The stability of the proposed solution is determined applying Liapunov's first method. Numerical solutions are presented graphically for the effects of the different equation parameters on the system stability, response and chaos.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Statistical and Nonlinear Physics
Authors
A.R.F Elhefnawy, A.F El-Bassiouny,