Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10733300 | Chaos, Solitons & Fractals | 2005 | 10 Pages |
Abstract
By using a modified extended Fan's sub-equation method, we have obtained new and more general solutions including a series of non-travelling wave and coefficient function solutions namely: soliton-like solutions, triangular-like solutions, single and combined non-degenerative Jacobi elliptic wave function-like solutions for the (2Â +Â 1)-dimensional dispersive long wave equation. The most important achievement of this method lies on the fact that, we have succeeded in one move to give all the solutions which can be previously obtained by application of at least four methods (method using Riccati equation, or first kind elliptic equation, or auxiliary ordinary equation, or generalized Riccati equation as mapping equation).
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Statistical and Nonlinear Physics
Authors
Emmanuel Yomba,