Article ID Journal Published Year Pages File Type
10734167 Chaos, Solitons & Fractals 2005 13 Pages PDF
Abstract
A two-dimensional cellular automaton (CA) model of an excitable medium is coupled with an array of micro-actuators in the form of abstract air-jets. Each cell of the CA is linked to a unique air-jet. A cell state determines the orientation and intensity of the airflow generated by the air-jet corresponding to the cell. We explore the phenomenology of an open-loop configuration in which CA cells do not sense the presence of the object being moved. Excitation waves generated in the initial stimulation of the medium, travel on the lattice and cause waves of actuation in the air-jets, resulting in changing airflow patterns. Thus, the waves of actuation move and rotate the manipulated object. We study the manipulation of three convex shapes by excitable CA, and provide the classification of various types of object motion from straight to sinuous and oscillatory trajectories. The relation between the excitation dynamic and resulting trajectories of the object will be used in future designs of hardware prototypes of massive-parallel manipulators controlled by non-linear media.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, , ,