Article ID Journal Published Year Pages File Type
10734284 Chaos, Solitons & Fractals 2005 16 Pages PDF
Abstract
In this paper we introduce a modification of the fast Lyapunov indicator (FLI) denominated OFLITT2 indicator that may provide a global picture of the evolution of a dynamical system. Therefore, it gives an alternative or a complement to the pictures given by the classical Poincaré sections and, besides, it may be used for any dimension. We present several examples comparing with the Poincaré sections in two classical problems, the Hénon-Heiles and the extensible-pendulum problems. Besides, we show the application to Hamiltonians of three degrees of freedom as an isotropic harmonic oscillator in three dimensions perturbed by a cubic potential and non-Hamiltonian problems as a four-dimensional chaotic system. Finally, a numerical method especially designed for its computation is presented in the appendix.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
,