Article ID Journal Published Year Pages File Type
10735983 Physica D: Nonlinear Phenomena 2009 4 Pages PDF
Abstract
In this paper we analyze the stochastic-resonant behavior of a chain of forward-coupled bistable overdamped oscillators used as a transmission line with possible applications to neurophysiology, information transmission and storage. We drive the line with a random sequence of non-return-to-zero bits and each oscillator is independently perturbed by noise. The line is analyzed for varying coupling strengths that lead to different regimes, ranging from noise-supported to coupling-supported transmission. We characterize the transmission performance by parameters such as output bit error rate and delivered signal-to-noise ratio, and show them to improve and remain flat for a broad range of noise intensities in all coupling regimes. In particular, we found that this system exhibits an enhanced robustness as compared to a linear transmission channel impaired only by additive noise.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,