Article ID Journal Published Year Pages File Type
10735984 Physica D: Nonlinear Phenomena 2009 11 Pages PDF
Abstract
We present a bidomain threshold model of intracellular calcium (Ca2+) dynamics in which, as suggested by recent experiments, the cytosolic threshold for Ca2+ liberation is modulated by the Ca2+ concentration in the releasing compartment. We explicitly construct stationary fronts and determine their stability using an Evans function approach. Our results show that a biologically motivated choice of a dynamic threshold, as opposed to a constant threshold, can pin stationary fronts that would otherwise be unstable. This illustrates a novel mechanism to stabilise pinned interfaces in continuous excitable systems. Our framework also allows us to compute travelling pulse solutions in closed form and systematically probe the wave speed as a function of physiologically important parameters. We find that the existence of travelling wave solutions depends on the time scale of the threshold dynamics, and that facilitating release by lowering the cytosolic threshold increases the wave speed. The construction of the Evans function for a travelling pulse shows that of the co-existing fast and slow solutions the slow one is always unstable.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,