Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10736380 | Wave Motion | 2005 | 19 Pages |
Abstract
Shear-wave splitting due to stress-aligned anisotropy is widely observed in the Earth's crust and upper mantle. The anisotropy is the result of stress-aligned fluid-saturated grain-boundary cracks and pore throats in almost all crustal rocks, and we suggest by stress-aligned grain-boundary films of liquid melt in the uppermost 400Â km of the mantle. The evolution of such fluid-saturated microcracks under changing conditions can be modelled by anisotropic poro-elasticity (APE). Numerical modelling with APE approximately matches a huge range of phenomena, including the evolution of shear-wave splitting during earthquake preparation, and enhanced oil recovery operations. APE assumes, and recent observations of shear-wave splitting confirm, that the fluid-saturated cracks in the crust and (probably) upper mantle are so closely spaced that the cracked rocks are highly compliant critical systems with self-organised criticality. Several observations of shear-wave splitting show temporal variation displaying extreme sensitivity to small stress changes, confirming the crack-critical system. Criticality has severe implications for many Solid Earth applications, including the repeatability of seismic determinations of fluid flow regimes in time-lapse monitoring of hydrocarbon production. Analysis of anisotropy-induced shear-wave splitting is thus providing otherwise unobtainable information about deformation of the inaccessible deep interior of the Earth.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
Stuart Crampin, Sheila Peacock,