Article ID Journal Published Year Pages File Type
10737903 Free Radical Biology and Medicine 2013 13 Pages PDF
Abstract
The redox-inert transition metal Zn is a micronutrient that plays essential roles in protein structure, catalysis, and regulation of function. Inhalational exposure to ZnO or to soluble Zn salts in occupational and environmental settings leads to adverse health effects, the severity of which appears dependent on the flux of Zn2+ presented to the airway and alveolar cells. The cellular toxicity of exogenous Zn2+ exposure is chazracterized by cellular responses that include mitochondrial dysfunction, elevated production of reactive oxygen species, and loss of signaling quiescence leading to cell death and increased expression of adaptive and inflammatory genes. Central to the molecular effects of Zn2+ are its interactions with cysteinyl thiols, which alters their functionality by modulating their reactivity and participation in redox reactions. Ongoing studies aimed at elucidating the molecular toxicology of Zn2+ in the lung are contributing valuable information about its role in redox biology and cellular homeostasis in normal and pathophysiology.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , ,