Article ID Journal Published Year Pages File Type
10738595 Free Radical Biology and Medicine 2010 13 Pages PDF
Abstract
Flavonoids synthesized from chalcone precursors in plants have been shown to possess cytotoxic activities with therapeutic potential. We have isolated the novel chalcone flavokawain B from Alpinia pricei Hayata, a plant native to Taiwan that is used in food and traditional Chinese medicine. Here, we report for the first time that flavokawain B significantly inhibits the growth of colon cancer cells and provide novel insight into the molecular mechanisms that underlie its apoptotic activity. Flavokawain B exerts its apoptotic action through ROS generation and GADD153 up-regulation, which lead to mitochondria-dependent apoptosis characterized by release of cytochrome c and translocation of Bak. The up-regulation of GADD153 in flavokawain B-treated HCT116 cells is associated with mitochondrial dysfunction and altered expression of Bcl-2 family members. Moreover, pretreatment with the ROS scavenger N-acetylcysteine abolishes flavokawain B-induced ROS generation, GADD153 up-regulation, and apoptosis. Similarly, RNAi-mediated gene silencing reduced flavokawain B-enhanced expression of GADD153 and apoptotic Bim, leading to diminished apoptosis. Interestingly, flavokawain B provokes G2/M accumulation as well as autophagy, in addition to apoptosis, suggesting that multiple pathways are activated in flavokawain B-mediated anticancer activity. Taken together, our data provide evidence for a molecular mechanism to explain the apoptotic activity of Alpinia plants, showing that flavokawain B acts through ROS generation and GADD153 up-regulation to regulate the expression of Bcl-2 family members, thereby inducing mitochondrial dysfunction and apoptosis in HCT116 cells.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , ,