Article ID Journal Published Year Pages File Type
10883567 Progress in Biophysics and Molecular Biology 2015 9 Pages PDF
Abstract
ATP synthases are molecular motors, which synthesize ATP, the ubiquitous energy source in all living cells. They use an electrochemical gradient to drive a rotation in the membrane embedded Fo domain, namely the c-ring, causing a conformational change in the soluble F1 domain which leads to the catalytic event. In the opposite fashion, they can also hydrolyse ATP to maintain the ion gradient across the membrane. To prevent wasteful ATP hydrolysis, bacteria and mammals have developed peculiar mechanistic features in addition to a common one, namely MgADP inhibition. Here I discuss the distinct ATPase inhibition mechanism in mitochondrial (IF1) and bacterial (subunits ε and ζ) F-type ATP synthases, based on available structural, biophysical and biochemical data.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biophysics
Authors
,