Article ID Journal Published Year Pages File Type
10884646 Biosystems 2005 9 Pages PDF
Abstract
The kinetic folding of RNA sequences into secondary structures is modeled as a complex adaptive system, the components of which are possible RNA structural rearrangements (SRs) and their associated bases and base pairs. RNA bases and base pairs engage in local stacking interactions that determine the probabilities (or fitnesses) of possible SRs. Meanwhile, selection operates at the level of SRs; an autonomous stochastic process periodically (i.e., from one time step to another) selects a subset of possible SRs for realization based on the fitnesses of the SRs. Using examples based on selected natural and synthetic RNAs, the model is shown to reproduce characteristic (nonlinear) RNA folding dynamics such as the attainment by RNAs of alternative stable states. Possible applications of the model to the analysis of properties of fitness landscapes, and of the RNA sequence-to-structure mapping are discussed.
Related Topics
Physical Sciences and Engineering Mathematics Modelling and Simulation
Authors
,