Article ID Journal Published Year Pages File Type
10899447 Cancer Letters 2015 5 Pages PDF
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a quality of life-altering consequence of chemotherapy experienced by a large percentage of cancer survivors. Approximately half of FDA-approved anti-cancer drugs are known to produce ROS. Doxorubicin (Dox), a prototypical ROS-generating chemotherapeutic agent, generates superoxide (O2−
- ) via redox cycling. Our group previously demonstrated that Dox, which does not cross the BBB, induced oxidative damage to plasma proteins leading to TNF-α elevation in the periphery and, subsequently, in brain following cancer chemotherapy. We hypothesize that such processes play a central role in CICI. The current study tested the notion that O2−
- is involved and likely responsible for Dox-induced plasma protein oxidation and TNF-α release. Addition of O2−
- as the potassium salt (KO2) to plasma resulted in significantly increased oxidative damage to proteins, indexed by protein carbonyl (PC) and protein-bound HNE levels. We then adapted this protocol for use in cell culture. Incubation of J774A.1 macrophage culture using this KO2-18crown6 protocol with 1 and 10 µM KO2 resulted in dramatically increased levels of TNF-α produced. These findings, together with our prior results, provide strong evidence that O2−
- and its resulting reactive species are critically involved in Dox-induced plasma protein oxidation and TNF-α release.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , ,