Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10903340 | Differentiation | 2010 | 9 Pages |
Abstract
Bone morphogenetic proteins (BMPs) are secretory signal molecules that have a variety of regulatory functions during embryonic morphogenesis. BMP2 has been shown to induce differentiation in many cell types, mediated through the activation of its target genes: the inhibitors of differentiation (Id1-3) and key transcription factors. In this study, we investigated the effects of BMP2 on mouse neuroblastoma (Neuro2a) cell differentiation and regulation of the expression of Id1-3 and neural-specific transcription factors. Our results showed that BMP2 stimulation upregulated Id1-3 expression at the early stage of application by involvement of the Smad signaling pathway. BMP2 caused phosphorylation of Smad1/5/8 followed by upregulation of Id1-3. Co-incubation with Noggin, a BMP antagonist, or Smad1 siRNA transfection significantly inhibited phosphorylation of Smad1/5/8 and upregulation of Id protein. Furthermore, our results showed that BMP2-induced differentiation of Neuro2a cells into neurons by downregulating the expression of Id1-3 proteins and upregulating the expression of neural-specific transcriptional factors Dlx2, Brn3a, and NeuroD6. The results suggested that the transient upregulation of Id1-3 expression during the early phase of BMP stimulation may play a role in lineage specification and promote differentiation of neuroblastoma cells towards a neuronal phenotype. Subsequently, a coordinated increase in expression of proneural transcription factors and a decrease in Id1-3 expression may culminate in the transition from proliferation to neurogenesis and the terminal neuronal differentiation of neuroblastoma cells.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Yang Du, Henry Yip,