Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10903459 | Differentiation | 2005 | 11 Pages |
Abstract
Lysyl oxidase (Lox) is a copper-dependent amine oxidase that catalyzes the cross-linking of collagen and elastin fibers in the extracellular matrix (ECM). In mammals, four closely related Lox-like enzymes have been described that share a highly conserved catalytic domain with Lox. We have characterized Xenopus laevis cDNAs for Lox, Loxl-1, and Loxl-3, and show that they are expressed during early embryonic development. Using RT-PCR we detected maternal transcripts for Xloxl-1, but levels remained low until tailbud stages. Transcripts for Xlox and Xloxl-3 were not detected until early neurulae, although transcripts for Xlox remained at low levels until tailbud stages. Whole mount in situ hybridization showed that transcripts for Xloxl-1 and Xloxl-3 are localized in the notochord, while transcripts for Xlox are found in the notochord, somites, and head. X. laevis Lox-like enzymes were inhibited by incubating embryos, from cleavage stages to tadpole stages, in β-aminopropionitrile, a specific inhibitor of the catalytic domain. The resulting embryos appeared to differentiate normally but suffered from poor collagen fiber formation. Defects included kinks in the notochord, a posterior shift of the somites, abnormal gut coiling, and the formation of edemas. Our data suggest that Lox-related enzymes are required for the proper formation of the ECM during X. laevis development.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Timothy J. Geach, Leslie Dale,