Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10903465 | Differentiation | 2005 | 9 Pages |
Abstract
Cellular de-differentiation can induce anticancer activity that makes cells resistant to carcinogenesis, but the molecular mechanism of this phenomenon has not been defined. To determine whether stable molecular changes develop in association with the process of de-differentiation, DNA microarray analyses were performed. These analyses compared control undifferentiated cells with three carcinogenesis-resistant clones of de-differentiated cells that were derived from mature adipocytes. The results of analysis of 6,000 genes and 6,000 ESTs establish that relative to control cells, all three de-differentiation-derived cell clones demonstrate that only one gene shows a consistent difference in expression. The expression of the H19 bioregulatory RNA is repressed an average of >fourfold in all de-differentiated cell clones. Real-time PCR analyses confirm these findings. This suggests that decreased H19 expression may account, at least in part, for the anticancer activity observed in de-differentiated cell clones.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Robert E. Scott, Sizhi Gao, Chung-Kwan Kim, Robin Cox,