Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10903778 | Experimental Cell Research | 2015 | 11 Pages |
Abstract
The tropomyosin-related kinase (Trk) family of receptor tyrosine kinases controls synaptic function, plasticity and sustains differentiation, morphology, and neuronal cell survival. Understanding Trk receptors down-regulation and recycling is a crucial step to point out sympathetic and sensory neuron function and survival. PC12 cells derived from pheochromocytoma of the rat adrenal medulla have been widely used as a model system for studies of neuronal differentiation as they respond to nerve growth factor (NGF) with a dramatic change in phenotype and acquire a number of properties characteristic of sympathetic neurons. In this study we demonstrated that in PC12 cells the TrkA receptor interacts with the deubiquitinating enzyme USP8/UBPy in a NGF-dependent manner and that it is deubiquitinated in vivo and in vitro by USP8. USP8 overexpression blocked NGF-induced neurites outgrowth while the overexpression of the catalytically inactive mutant USP8/UBPyC748A caused a marked increase of cell differentiation. Localization and biochemical experiments have point out that USP8 and TrkA partially co-localize in endosomes after NGF stimulation. Finally we have studied the role played by USP8 on TrkA turnover; using specific siRNA for USP8 we found that USP8 knockdown increases TrkA half-life, suggesting that the deubiquitinating activity of USP8 promotes TrkA degradation.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Michela Ceriani, Loredana Amigoni, Alessia D'Aloia, Giovanna Berruti, Enzo Martegani,