Article ID Journal Published Year Pages File Type
10903999 Experimental Cell Research 2014 7 Pages PDF
Abstract
Human cellular DNA is under constant attack from both endogenous and exogenous mutagens, and consequently the base excision repair (BER) pathway plays a vital role in repairing damaged DNA bases, sites of base loss (apurinic/apyrimidinic sites) and DNA single strand breaks of varying complexity. BER thus maintains genome stability, and prevents the development of human diseases, such as premature aging, neurodegenerative diseases and cancer. Indeed, there is accumulating evidence that misregulation of BER protein levels is observed in cells and tissues from patients with these diseases, and that post-translational modifications, particularly ubiquitylation, perform a key role in controlling BER protein stability. This review will summarise the presently available data on ubiquitylation of some of the key BER proteins, and the functional consequences of this modification.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, ,