Article ID Journal Published Year Pages File Type
10904537 Experimental Cell Research 2011 10 Pages PDF
Abstract
Mesenchymal stem cells (MSCs) are regarded as a promising source of cell-based therapy for heart injury. In fact, less than 30% of MSCs contribute to cardiomyocytes differentiation, and the isolation procedure and biological characteristics of this population of cells remain unknown. Here we isolate and investigate the biological characteristics of this subpopulation of MSCs. Twenty four MSC clones were randomly selected using single-cell monoclonal technology. After induced with 5-azacytidine, eight clones displayed cardiomyocyte-like morphologies, and highly (over 90%) expressed cardiac-specific markers cTnT and α-actin, and displayed transient outward K+ current (Ito), inwardly rectifying K+ current (IK1) and delayed rectifier K+ current (IKDR), which were typical of cardiomocytes. Other clones merely showed Ito current, and the current densities were different from those of cardiomyocytes. In contrast to the other clones, before induced with 5-azacytidine, the eight clones expressed early cardiac markers GATA4 and NKX2.5, but not cTnT, α-actin, CD44 and CD90, and had no potentials for adiopogenesis, osteogenesis or chondrogenesis after induction. Our data suggest that the subgroup of MSCs that contributes to cardiomyocytes differentiation is cardiac progenitor cells. Moreover, we show the preliminary purification of this population of cells with a high potential for cardiomyocytes differentiation using single-cell monoclonal technology.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , ,