Article ID Journal Published Year Pages File Type
10904544 Experimental Cell Research 2011 11 Pages PDF
Abstract
Cardiac fibroblasts are reported to be relatively resistant to stress stimuli compared to cardiac myocytes and fibroblasts of non-cardiac origin. However, the mechanisms that facilitate their survival under conditions of stress remain unclear. We explored the possibility that NF-κB protects cardiac fibroblasts from hypoxia-induced cell death. Further, we examined the expression of the antiapoptotic cIAP-2 and Bcl-2 in hypoxic cardiac fibroblasts, and their possible regulation by NF-κB. Phase contrast microscopy and propidium iodide staining revealed that cardiac fibroblasts are more resistant than pulmonary fibroblasts to hypoxia. Electrophoretic Mobility Shift Assay showed that hypoxia activates NF-κB in cardiac fibroblasts. Supershift assay indicated that the active NF-κB complex is a p65/p50 heterodimer. An I-κB-super-repressor was constructed that prevented NF-κB activation and compromised cell viability under hypoxic but not normoxic conditions. Similar results were obtained with Bay 11-7085, an inhibitor of NF-κB. Western blot analysis showed constitutive levels of Bcl-2 and hypoxic induction of cIAP-2 in these cells. NF-κB inhibition reduced cIAP-2 but not Bcl-2 levels in hypoxic cardiac fibroblasts. The results show for the first time that NF-κB is an important effector of survival in cardiac fibroblasts under hypoxic stress and that regulation of cIAP-2 expression may contribute to its pro-survival role.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , ,