Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10904708 | Experimental Cell Research | 2007 | 16 Pages |
Abstract
LIM kinase 1 (LIMK1) is a key regulator of actin dynamics as it phosphorylates and inactivates cofilin, an actin-depolymerizing factor. LIMK1 activity is also required for microtubule disassembly in endothelial cells. A search for LIMK1-interacting proteins identified p25α, a phosphoprotein that promotes tubulin polymerization. We found that p25 is phosphorylated by LIMK1 on serine residues in vitro and in cells. Immunoblotting analysis revealed that p25 is not a brain specific protein as previously reported, but is expressed in all mouse tissues. Immunofluorescence analysis demonstrated that endogenous p25 is co-localized with microtubules and is also found in the nucleus. Down-regulation of p25 by siRNA decreased microtubule levels while its overexpression in stable NIH-3T3 cell lines increased cell size and levels of stable tubulin. Bacterially expressed unphosphorylated p25 promotes microtubule assembly in vitro; however, when phosphorylated in cells, p25 lost its ability to assemble microtubule. Our results represent a surprising connection between the tubulin and the actin cytoskeleton mediated by LIMK1. We propose that the LIMK1 phosphorylation of p25 blocks p25 activity, thus promoting microtubule disassembly.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Karla Acevedo, Rong Li, Priscilla Soo, Randy Suryadinata, Boris Sarcevic, Valentina A. Valova, Mark E. Graham, Phillip J. Robinson, Ora Bernard,