Article ID Journal Published Year Pages File Type
10909512 Leukemia Research 2005 14 Pages PDF
Abstract
The intracellular signaling pathways that mediate cytokine-induced granulocytic and monocytic differentiation are incompletely understood. In this study, we examined the importance of the MEK/ERK signal transduction pathway in granulocyte-colony stimulating factor (G-CSF)-induced granulocytic differentiation of murine 32Dcl3 cells, and in interleukin-6 (IL-6)-induced monocytic differentiation of murine M1 cells. Induction of granulocytic differentiation with G-CSF, or monocytic differentiation with IL-6, led to rapid and sustained activation of the MEK-1/-2 and ERK-1/-2 enzymes. Inhibition of the MEK/ERK pathway by pretreatment with the MEK inhibitor U0126 dramatically attenuated G-CSF-induced granulocytic differentiation and IL-6-induced monocytic differentiation. Inhibition of MEK/ERK signaling also significantly reduced cytokine-induced DNA binding activities of STAT3 and PU.1, transcription factors that have been implicated in myeloid differentiation. Additionally, interleukin-3, which inhibits G-CSF-induced differentiation of 32Dcl3 cells, also inhibited the ability of G-CSF to stimulate prolonged MEK/ERK activation. Thus, the opposing actions of different hematopoietic cytokines on myeloid progenitors may be mediated at the level of MEK/ERK activation. Taken together, these studies demonstrate an important requirement for MEK/ERK activation during cytokine-induced granulocytic and monocytic differentiation.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , ,