Article ID Journal Published Year Pages File Type
10913892 Matrix Biology 2009 10 Pages PDF
Abstract
The adult olfactory epithelium has maintained the ability to reconstitute its olfactory sensory neurons (OSNs) from a basal progenitor cell compartment. This allows for life-long turnover and replacement of receptor components as well as repair of the primary olfactory pathway in response to injury and environmental insults. The present study investigated whether fibulin-3, a glycoprotein in the extracellular matrix and binding partner of tissue inhibitor of metalloproteinases-3 (TIMP-3), plays a role in ongoing plasticity and regenerative events in the adult primary olfactory pathway. In wild-type control mice, fibulin-3 protein was detected on IB4+CD31+ blood vessels, nerve fascicles and the basement membrane underneath the olfactory epithelium. After target ablation (olfactory bulbectomy), fibulin-3 was also abundantly present in the central nervous system (CNS) scar tissue that occupied the bulbar cavity. Using two different lesion models, i.e. intranasal Triton X-100 lesion and olfactory bulbectomy, we show that fibulin-3 deficient (Efemp1−/−) mice have impaired recovery of the olfactory epithelium after injury. Ten days post-injury, Efemp1−/− mice showed altered basal stem/progenitor cell proliferation and increased overall numbers of mature (olfactory marker protein (OMP) -positive) versus immature OSNs. However, compromised regenerative capacity of the primary olfactory pathway in Efemp1−/− mice was evidenced by reduced numbers of mature OSNs at the later time point of 42 days post-injury. In addition to these neural differences there were consistent changes in blood vessel structure in the olfactory lamina propria of Efemp1−/− mice. Overall, these data suggest a role for fibulin-3 in tissue maintenance and regeneration in the adult olfactory pathway.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , ,