Article ID Journal Published Year Pages File Type
10914567 Molecular Oncology 2016 15 Pages PDF
Abstract
Cyclooxygenase-2 (COX-2) is highly expressed in tumor cells and has been regarded as a hallmarker for cancers, but the excise regulatory mechanism of COX-2 in tumorigenesis remains largely unknown. Here, we pulled down and identified a novel COX-2 regulator, heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), which could specifically bind to COX-2 core promoter and regulate tumor growth in non-small-cell lung cancers (NSCLCs). Knockdown of hnRNPA2/B1 by shRNA or siRNA downregulated COX-2 expression and prostaglandin E2 (PGE2) production, and suppressed tumor cell growth in NSCLC cells in vitro and in vivo. Conversely, overexpression of hnRNPA2/B1 up-regulated the levels of COX-2 and PGE2 and promoted tumor cell growth. We also showed that hnRNPA2/B1 expression was positively correlated with COX-2 expression in NSCLC cell lines and tumor tissues, and the up-regulated expression of hnRNPA2/B1 and COX-2 predicted worse prognosis in NSCLC patients. Furthermore, we demonstrated that the activation of COX-2 expression by hnRNPA2/B1 was mediated through the cooperation with p300, a transcriptional co-activator, in NSCLC cells. The hnRNPA2/B1 could interact with p300 directly and be acetylated by p300. Exogenous overexpression of p300, but not its histone acetyltransferase (HAT) domain deletion mutation, augmented the acetylation of hnRNPA2/B1 and enhanced its binding on COX-2 promoter, thereby promoted COX-2 expression and lung cancer cell growth. Collectively, our results demonstrate that hnRNPA2/B1 promotes tumor cell growth by activating COX-2 signaling in NSCLC cells and imply that the hnRNPA2/B1/COX-2 pathway may be a potential therapeutic target for human lung cancers.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , , , , , , , , , , ,