Article ID Journal Published Year Pages File Type
10914942 Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2013 7 Pages PDF
Abstract
Cadmium (Cd) is a well-established carcinogen, however, the underlying mechanism, especially the role of epigenetics in it, is still poorly understood. Our previous work has disclosed that when rats were exposed to 0.5 mg CdCl2 (kg d) for 8 and 12 weeks, the growth of peripheral white blood cells (WBC) was obviously stimulated but no over-proliferation of granulocyte-monocyte (GM) progenitor cells was observed in the bone marrow, suggesting that the over-proliferation of lymphocyte was promoted by Cd exposure. Is DNA-methylation involved in this Cd-stimulated cell proliferation? The present study found that when human B lymphoblast HMy2.CIR cells were exposed to Cd with a dose lower than 0.1 μM for 3 months, both cell proliferation and mRNA expressions of DNA methyltransferases of DNMT1 and DNMT3b were increased, while the mRNA of tumor suppressor gene p16 was remarkably decreased. Furthermore, the level of genomic DNA methylation was increased and the CpG island in p16 promoter was hypermethylated in the Cd-exposed cells. A DNA demethylating agent, 5-aza-2′-deoxycytidine (5-aza-dC), diminished Cd-stimulated cell proliferation associated with p16 overexpression. Our results suggested that the chronic exposure of low dose Cd could induce hypermethylation of p16 promoter and hence suppress p16 expression and then promote cell proliferation, which might contribute to Cd-induced carcinogenesis.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , ,