Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10914955 | Mutation Research/Genetic Toxicology and Environmental Mutagenesis | 2013 | 7 Pages |
Abstract
Amongst DNA-repair processes, base-excision repair (BER) is the major mechanism for removal of DNA-base lesions caused by environmental genotoxicants. BER has been proven to exist in fish but has not been investigated in fish cell-lines, although these constitute increasingly important tools in eco-toxicological assessment. The present study aims at highlighting BER capacity of RTL-W1 and RTG-W1, two trout cell lines used in eco-genotoxicity studies. This is realized by following the kinetics of strand-break repair after a short exposure to model genotoxicants-leading predominantly to BER-specific lesions-by means of the standard alkaline and Fpg-modified comet assays. Results show that both cell lines efficiently repair single-strand breaks and base-alkylation damages within 4Â h and 24Â h, respectively. Then, the study shows that after minor modifications of the protocol, the cell extract-based BERc assay can be used to evaluate the base-incision capacity of the cell lines and its variation after exposure of the cells to a model inhibitor of BER (3-aminobenzamide) and to environmental contaminants such as cadmium and tributyltin. This work provides a basis for the further development of DNA-repair activity in fish cell-lines as a new biomarker of genotoxicity.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Aude Kienzler, Sylvie Bony, Xavier Tronchère, Alain Devaux,