Article ID Journal Published Year Pages File Type
10916373 Nuclear Medicine and Biology 2005 7 Pages PDF
Abstract
5,7-Dihydro-3-[2-[1-(2-fluorobenzyl)-4-piperidinyl]ethyl]-6H-pyrrolo[3,2,f]-1,2-benzisoxazol-6-one (2-fluoro-CP-118,954; 1), a potent acetylcholinesterase (AChE) inhibitor, was prepared as a radioligand by reductive alkylation of CP-144,885 the debenzylated form of CP 118,954, with 2-[18F]fluorobenzaldehyde. The decay-corrected radiochemical yield was 25-30% and the effective specific activity was 41-53 GBq/μmol. Tissue distribution studies of 2-[18F]fluoro-CP-118,954 ([18F]1) in mice showed that the regional brain distribution correlated well with the known density of AChE in the mouse brain. A high level of uptake in the striatum was also shown at all time points in the olfactory tubercle, which is known to have dopaminergic neurons. Blocking studies showed that radioligand uptake in all brain regions was not altered by either the dopamine receptor antagonists or the sigma receptor agonist. On the other hand, radioligand uptake in both the striatum and the olfactory tubercle was significantly blocked (80%) by ligand 1. The low level of bone uptake over time suggested that [18F]1 underwent little in vivo metabolic defluorination. The lack of metabolite formation in the mouse brain indicated that the regional distribution was attributed to [18F]1. These results demonstrated that [18F]1 binds specifically and selectively to AChE in mice and appears to be a suitable radioligand for the in vivo mapping of AChE.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , ,