Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10916804 | Pathology - Research and Practice | 2016 | 9 Pages |
Abstract
Type 2 diabetic nephropathy (DN) is a serious end-stage kidney disease worldwide. Multiple studies demonstrate that resveratrol (RSV) has a beneficial effect on DN. However, whether RSV-induced improvement in kidney function in diabetes is due to the regulation of autophagy remains unclear. Here, we investigated the mechanisms underlying RSV-mediated protection against DN in diabetic rats, with a special focus on the role of NAD-dependent deacetylase sirtuin 1 (Sirt1) in regulating autophagy. We found that long-term RSV treatment in rats promoted Sirt1 expression and improved related metabolic levels in the diabetic kidney. Our study showed that, in cultured NRK-52E cells, Sirt1 knockdown inhibited the autophagy levels of proteins Atg7, Atg5, and LC3 and impaired the RSV amelioration of dysfunctional autophagy under hypoxic condition. Furthermore, exposed to 1% O2 over time induced autophagy dysfunction and apoptosis in NRK-52E cells, which could be improved by RSV treatment. Our data highlight the role of the Sirt1-mediated pathway in the effects of RSV on autophagy in vivo and in vitro, suggesting RSV could be a potential new therapy for type 2 DN.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Liqun Ma, Rongguo Fu, Zhaoyang Duan, Jiamei Lu, Jie Gao, Lifang Tian, Zhian Lv, Zhao Chen, Jin Han, Lining Jia, Li Wang,