Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10924700 | Seminars in Oncology | 2005 | 7 Pages |
Abstract
Previously untreated breast cancer is relatively sensitive to a range of anticancer drugs. However, exposure to these drugs is often followed by acquisition of multidrug resistance, which is associated with a significantly worse outcome. One of the more widely studied mechanisms of drug resistance is the function of P-glycoprotein (P-gp), a membrane transporter with a wide range of substrates, including several anticancer agents, and a member of the ATP-binding cassette superfamily of proteins. A review of the published literature indicates that P-gp expression is detected in a significant percentage of breast cancers. Moreover, P-gp expression is increased after exposure to chemotherapeutic drugs (particularly those known to be P-gp substrates), and correlates with a worse response to treatment, especially when detected following treatment, in both the adjuvant and neoadjuvant settings. Consequently, P-gp represents a potential biomarker of drug resistance. However, a direct role of P-gp as a cause of clinical drug resistance has not been adequately tested in breast cancer. Future studies aimed at validating the mechanistic role of P-gp should include trials of multidrug resistance reversal using P-gp-specific inhibitors and relating results to the levels of P-gp expression. Future studies should also take into account the potentially multifactorial nature of multidrug resistance.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Robert Clarke, Fabio Leonessa, Bruce Trock,