Article ID Journal Published Year Pages File Type
10926380 Cell Calcium 2011 11 Pages PDF
Abstract
When the intracellular calcium stores are depleted, a Ca2+ influx is activated to refill these stores. This store-operated Ca2+ entry (SOCE) depends on the cooperation of several proteins as STIM1, Orai1, and, possibly, TRPC1. To elucidate this role of TRPC1 in skeletal muscle, TRPC1 was overexpressed in C2C12 cells and SOCE was studied by measuring the changes in intracellular Ca2+ concentration ([Ca2+]i). TRPC1 overexpression significantly increased both the amplitude and the maximal rate-of-rise of SOCE. When YM-58483, an inhibitor of TRPC1 was used, these differences were eliminated, moreover, SOCE was slightly suppressed. A decrease in the expression of STIM1 together with the downregulation of SERCA was confirmed by Western-blot. As a consequence, a reduction in maximal Ca2+ uptake rate and a higher resting [Ca2+]i following the Ca2+ transients evoked by 120 mM KCl were detected. Morphological changes also accompanied the overexpression of TRPC1. Differentiation of the myoblasts started later, and the myotubes were thinner in TRPC1-overexpressing cultures. For these changes the observed decrease in the nuclear expression of NFAT1 could be responsible. Our results suggest that enhanced expression of TRPC1 increases SOCE and has a negative effect on the STIM1-Orai1 system, indicating an interaction between these proteins.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , ,