Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10926383 | Cell Calcium | 2010 | 9 Pages |
Abstract
Stretch-activated channels (SACs) act as membrane mechanotransducers since they convert physical forces into biological signals and hence into a cell response. Pulmonary arterial smooth muscle cells (PASMCs) are continuously exposed to mechanical stimulations e.g., compression and stretch, that are enhanced under conditions of pulmonary arterial hypertension (PAH). Using the patch-clamp technique (cell-attached configuration) in PASMCs, we showed that applying graded negative pressures (from 0 to â60Â mmHg) to the back end of the patch pipette increases occurrence and activity of SACs. The current-voltage relationship (from â80 to +40Â mV) was almost linear with a reversal potential of 1Â mV and a slope conductance of 34Â pS. SACs were inhibited in the presence of GsMTx-4, a specific SACs blocker. Using microspectrofluorimetry (indo-1), we found that hypotonic-induced cell swelling increases intracellular Ca2+ concentration ([Ca2+]i). This [Ca2+]i increase was markedly inhibited in the absence of external Ca2+ or in the presence of the following blockers of SACs: gadolinium, streptomycin, and GsMTx-4. Interestingly, in chronically hypoxic rats, an animal model of PAH, SACs were more active and hypotonic-induced calcium response in PASMCs was significantly higher (nearly a two-fold increase). Moreover, unlike in normoxic rats, intrapulmonary artery rings from hypoxic rats mounted in a Mulvany myograph, exhibited a myogenic tone sensitive to SAC blockers. In conclusion, this work demonstrates that SACs in rat PASMCs can be activated by membrane stretch as well as hypotonic stimulation and are responsible for [Ca2+]i increase. The link between SACs activation-induced calcium response and myogenic tone in chronically hypoxic rats suggests that SACs are an important element for the increased pulmonary vascular tone in PAH and that they may represent a molecular target for PAH treatment.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Thomas Ducret, Jalila El Arrouchi, Arnaud Courtois, Jean-François Quignard, Roger Marthan, Jean-Pierre Savineau,